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A formal apparatus is developed for dealing with quantum fluctuations in a driven (nonequilibrium) 
state. Phenomenological equations for the decay of the system from an arbitrary state to the driven state 
are presumed known. By assuming that at some initial time the system-reservoir density matrix can be 
factored, we establish that the spectrum of fluctuations is given by the Fourier transform of the solution 
of the phenomenological equations, i.e., the regression of fluctuations obey the "macroscopic" equations of 
motion even in the nonequilibrium case. 

1. INTRODUCTION 

WE have previously given an extensive classical 
discussion of the calculation of the spectrum of 

fluctuations from a steady nonequilibrium state.1 In the 
present paper, we shall develop a natural extension of 
the previous method to quantum-mechanical systems. 
As before, our approach is "macroscopic" in the sense 
that we do not require a complete description, but shall 
assume that the future is determined by the presence 
of a suitably chosen set of variables (the Markoffian 
assumption). Microscopic approaches2 have been used 
to provide rigorous proofs of relationships between 
noise and admittance, e.g., the Nyquist theorem, but 
an actual calculation of either quantity usually requires 
the development of a Markoffian approximation, e.g., 
a Boltzmann equation. 

Our problem may be described abstractly as follows: 
We have a system interacting with a reservoir. The 
system-reservoir interaction causes the motion of the 
system to be damped, and introduces fluctuations into 
the system. The division into system plus reservoir is to 
be so chosen that all strong couplings are included 
within the system. Specifically, the system must be 
sufficiently large that the Dirac density matrix3 of the 
system constitutes a set of Markoffian variables, i.e., 
the future of the density matrix elements must be pre­
dictable from their present values without specific 
knowledge of the reservoir density matrix. We assume, 
in short, that a set of "phenomenological" equations 
exist for the motion of the system. These could, for 
example, be derived by the methods of Bloch and 
Wangsness4,5 in which system reservoir correlations are 
included in solving the dynamical equations that carry 
the system from time t to t-\- At but are neglected at the 
initial time t. 

For purposes of visualization, we may consider a 
localized electron in a crystal, in a paramagnetic reso-

* Presented to the American Physical Society [Bull. Am. Phys. 
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2 H . B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951); 

R. Kubo, J. Phys. Soc. Japan 12, 570 (1957); M. Lax, Phys. Rev. 
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Society, London, 1961), Vol. 24, p. 304, and references therein. 

4 R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953). 
5 F. BJoch, Phys. Rev. 102, 104 (1956); 105, 1206 (1957). 

nance experiment. The spin states of the electron, and 
the electromagnetic field may be regarded as our system. 
Other spins and lattice vibrations provide the reservoir. 
I t would be more precise for this problem (and abso­
lutely necessary in a ferromagnetic resonance) to in­
clude all the spins as part of the system, leaving only 
the lattice vibrations as reservoir. As one makes the 
system more inclusive, the calculation becomes more 
rigorous but less tractable. In the limit, as the system 
becomes all inclusive, our methods become "micro­
scopic" and our results rigorously correct, but only of 
formal value. 

The first microscopic, quantum-mechanical treatment 
of driven systems has been given by Bernard and 
Callen.6 Their treatment is limited to sufficiently weak 
driving fields that the system is only slightly off equi­
librium, and perturbation methods are applicable. They 
obtain formal theorems relating the first- and second-
order driven noise to third- and higher-order time-
displaced correlation functions in the equilibrium state. 
There is as yet, however, no practical method of evaluat­
ing such higher moments. 

By way of contrast, the discussion of noise in strongly 
driven quantum-mechanical systems, e.g., masers, is 
usually of a heuristic nature, or one which neglects off-
diagonal elements of the density matrix.7 We may, 
therefore, be forgiven if in this first systematic treat­
ment we make the Bloch-Wangsness approximation of 
assuming that the density matrix of the system plus 
reservoir can be factored into system and reservoir 
matrices (at time t but not for the dynamics between / 
and t-\-At). The system can then be driven strongly. 
The motion of the reservoir is, in this approximation, 
uncorrelated with the system, although it is not neces­
sarily at equilibrium, e.g., the effective temperature of 
the reservoir could be raised due to heating by the 
system. If the system is subject to alternating forces 
(as in a maser pump) the reservoir could have Fourier 
components at the pump frequency. [See Eq. (5.20).] 

In a given physical situation, the factorization error 
can be made sufficiently small by making the system 

e W. Bernard and H. B. Callen, Rev. Mod. Phys. 31, 1017 
(1959). 

7 For a review of maser noise work see J. Weber. Rev. Mod, 
Phys. 31, 681 (1959). 
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large enough to include all elements strongly affected 
by the driving force. A second approach would be to 
take account of the local perturbation of the reservoir 
by the system to first order. We postpone the latter 
procedure to a later discussion since it would also re­
quire a modification of the Bloch-Wangsness phe-
nomenological equations.4,5 

I t may be of interest here to compare the assumptions 
made in this paper with our previous classical treatment 
of driven systems.1 

1. We assume, as before, that the system is 
Markoffian. 

2. This Markoffian character is assumed to arise be­
cause of a sufficiently weak coupling to a reservoir to 
permit factorization. The results, however, conceivably 
have a greater range of validity than required by this 
assumption. In the classical case, the reservoir is not 
explicitly mentioned, but in effect an equivalent, assump­
tion is tacitly made. 

3. The assumption of stationarity made classically 
is now omitted since we wish to discuss systems driven 
by alternating driving forces. I t would not be difficult 
to eliminate this assumption in the classical case by the 
methods developed here. 

4. In the classical case, the assumption of quasi-
linearity was eliminated by introducing a discussion of 
distribution functions. In the quantum-mechanical 
case, our discussion is based on the density matrix and 
the equations are automatically linear. 

Our principal result, Eq. (5.19), is that even in the 
nonequilibrium case the regression of fluctuations obey the 
macroscopic equations of motion. This result was first 
assumed by Onsager8 in dealing with the equilibrium 
case. We have previously remarked1 that this result 
should follow for any Markoffian system. The Nyquist 
theorem must, however, be modified since the fluctua­
tions at one time are disturbed by the driving forces.1 

I t may be emphasized here that only one approxima­
tion is made in the entire paper—Eq. (5.18) or 
Eq. (5.20)—and it is this approximation that guarantees 
the desired Markoffian character of the system density 
matrix. 

2. NOISE IN NONSTATIONARY SYSTEMS 

If a(t) = I(t) — (I(t)) represents a fluctuation in the 
variable / , the noise at frequency / = (OJ/2TT) for a sta­
tionary classical random variable is usually defined by1 

G ( / ) = lim — e~iuta(t)dt (2.1) 

8 L . Onsager, Phys. Rev. 37, 4£5 (1931); 38, 2265 (1931). For 
a recent critical discussion of the Onsager regression hypothesis 
see A. Shimony, thesis, Princeton University, 1962 (unpublished). 

which, for sufficiently large T can be rewritten as 

2 rT /.co 

) = — / dt e~iuT(a(t+T)a 
TJ o J -oo 

= 2 e-iuT(a(t+r)a 
J —00 

(2.2) 

(t))dr, 

where ( ) represent an ensemble average, and the 
upper bar represents a time average. 

For a nonstationary system the noise itself fluctuates 
in time and one would like to define a noise G(f,t) at 
frequency / and time t. Even in classical systems, this 
is prevented by the Fourier relation between time and 
frequency dependence, which creates an analog of the 
Heisenberg uncertainty principle. One cannot measure 
frequency and time simultaneously with absolute pre­
cision, but only subject to errors obeying the uncer­
tainty principle: 

AwA/^1/2. (2.3) 

As a consequence, there is no unique function G(ftt), 
but there is a variety of possible definitions which can 
differ from one another in detail, but presumably agree 
if one asks for the noise in a frequency X time interval 
large compared to unity. One such definition suggested 
by Eq. (2.2) is 

G(U) 
< 

exp(-iwT)(a(t+T)a(t))dr, (2.4) 

which has the desirable characteristics 

G(f)=G(f,t), 

(C«(0]2>=- f G(f,l)df 
2J-X 

(2.5) 

•f 
Jo 

KG(f,t)+G(-f, *)]<*/; (2.6) 

i.e., the fluctuations at a given frequency (time) can be 
obtained by integrating G(/,/) over time (frequency). 

A similar nonuniqueness difficulty occurs in defining 
a phase-space function G(p,q) in quantum mechanics, 
since position q and momentum p obey a Heisenberg 
uncertainty principle. This problem is discussed by 
Wigner and Moyal.9 They make a choice for the phase-
space problem which for our frequency time space is 
equivalent to the "symmetrical" choice: 

G(f, 
J —a 

exp(- fW)<a( /+Jr)a( / - jT)>dT. (2.7) 

For the stationary case there is no distinction between 
Eqs. (2.6) and (2.7), and furthermore, both then yield 

9 E. Wigner, Phys. Rev. 40, 749 (1932); J. E. Moyal, Proc. 
Cambridge Phil. Soc. 45, 99 (1949). 
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results independent of time and equivalent to the usual 
definition, Eq. (2.2). 

All of the above-mentioned alternatives, including 
the results of any physical measurement through a 
filter system, can be expressed as a suitable integral of 
the form 

G= J jK(tit
f)(a(t)a(tf))dtdt\ (2.8) 

although for Eq. (2.2) one might need to take the limit 
as T—»oo after using a K(l/,T). A definition of noise 
suitable for quantum mechanics10 replaces a(t)a(if) by 
the Hermitian operator 

a(t)a(f) -> J[«(0«(O+ot(O«(01 (2.9) 

i.e., the anticommutator; whereas, the linear response 
of the system to an external driving force involves 
commutators.2 All of the desired results can, therefore, 
be obtained from a computation of (a(f)a(t?)) or, more 
generally, of (aM(/)ay (/'))• The succeeding sections are 
devoted, therefore, to a study of such correlation 
functions. 

3. AN INTUITIVE TREATMENT OF DENSITY 
MATRIX FLUCTUATIONS 

In this section, we present an elementary but un­
conventional treatment of fluctuations in quantum-
mechanical systems. The treatment is unconventional 
because we regard the fluctuations as taking place not 
in the variables, but in the density matrix. The latter, 
as customarily defined, is already an ensemble average, 
and does not fluctuate. Let us use ai3-(t) to denote the 
conventional density matrix of the system for states i 
and j , and <r#(/) the corresponding operator random 
variable, whose quantum expectation takes a different 
value for each member of the ensemble of systems. The 
mean value of any observable J with the matrix ele­
ments Iij in some representation of the system, can be 
written at time t as 

< / ( 0 ) = T r [ ^ ( 0 ] = E I«*ii® (3.1) 

and a fluctuation from this mean value can be written 
as 

« ( 0 = / ( 0 - < / ( 0 H E iiA*ji(t), (3.2) 
where 

A0ji(t) = <rji(t)-<T3i(t) (3.3) 

represents a fluctuation of the density matrix operator 
from its mean value. The noise can then be expressed 
via Eqs. (2.4)~(2.8) in terms of 

<a(0a(O>«£ IiiIki(&*ji(t)A0ik(t')). (3.4) 

As in Eqs. (2.12)-(2.14) of our classical treatment1 

the mean in Eq. (3.4) may be taken in two steps. First, 
one takes the mean of the Acr at the later time subject 
to the condition that the Aor's at the earlier time are 

10 H. Ekstein and N. Rostoker, Phys. Rev. 100, 1023 (1955). 

known. Thus, for t>i> we can write 

<Acrit(0>*«')==£ 031,"(M')Aa„,(0 (3.5) 

where Oqp
H{t,lf) can be obtained by solving the phe-

nomenological equations for A<r (which will be identical 
to those for <r in a linear problem). We shall not enter 
here upon a discussion of the derivation of the phe-
nomenological equations. We only remark that the 
work of Bloch and Wangsness leads one to expect that 
the phenomenological equations take the form 

ddjijdt^r i £ k (Ejkffki— VjkEki) = — IV, nm<Tnm, (3.6) 

where the Ejk represents the matrix elements of the 
system energy (possibly modified by second-order 
"Lamb" shifts produced by the reservoir) and the r ' s 
are damping terms produced by the reservoir. In the 
stationary case, the E's and F s are independent of 
time and the solution of the initial value problem has 
the property of invariance under a time displacement: 

0„«(t/)-0„"(t-f), (3.7) 

but when periodic or more generally time-dependent 
forces are present, this invariance is lost. 

Actually, for our purposes, we do not even need to 
require that the equation for the O's takes the linear 
form, Eq. (3.6). All that is necessary for the validity of 
Eq. (3.5) is that the phenomenological equation for the 
O's be linearizable about the driven state, so that the 
fluctuations A<r from the driven state obey linear 
equations. 

Equations (3.4) and (3.5) yield 

<a(0a(O>=E 7*//*iOw"ftO<AtFw(OAcr«(0> (3.8) 

for t>tf. For t<t', we interchange the dummy indices 
(ji) with (Ik) and make use of Eq. (3.5) with / and tr 

interchanged: 

<a(*MO>=Z Ii3hiOqPHifM^ik(t)AirQP(t)). (3.9) 

From our previous classical discussion of fluctuations 
in occupation numbers [Eq. (12.36) of reference 1], we 
expect that 

(Aff qqA<rkk) = 5gJfc(T**— aqq(Tkk, (3.10) 

where all er's are evaluated at the same time. The quad­
ratic term on the right-hand side arises from the 
constant 

Tr<r=£*<r**=l. (3.11) 

If contact were made with a particle reservoir (in 
addition to a heat reservoir), these quadratic terms 
could be omitted. 

The only general relation invariant under an arbi­
trary change of basis, which agrees with Eq. (3.10) for 
the diagonal fluctuation is 

(AaflpA<rjk)=adgjfc<rjp+(l — a)8ipaqk—crqp<rik, (3.12) 

with a arbitrary. The requirement that this result be 
unchanged in the order of Aaqp and Aaik is inter-
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changed leads to # = | . We find in the next section, 
however, that the vqp are to be interpreted properly as 
operators, and ( ) as a weighted trace, so that order 
is important, and the correct result is found to be 
a = l , i.e., 

(Aorgp(OA<r, j f c(0)=5g^p(0-^ f lp(0^(0^ (3.13) 

If Eq. (3.13) is inserted into Eq. (3.8) and use is 
made of the relationship 

I 0 5 p ^ ( M > 5 P ( 0 = ^ « , (3.14) 

then Eq. (3.8) reduces to 

<a(0«(O>=E/^«CO*,'H^O^p(O-^(0^i*(O], 
(3.15) 

or 
(a(t)a(t'))= {Kt)I(f))- {I{t))(I(t')), (3.16) 

and the terms in Eqs. (3.15) and (3.16) correspond to 
one another in view of Eq. (3.1). 

We note that Eq. (3.14) is consistent with Eq. (3.5) 
only if the equation for a is linear, but Eqs. (3.9) and 
(3.13) can be combined without assuming linearity. 

The correctness of our analysis up to this point may 
be verified by applying it to a closed system describable 
by a Hamiltonian H(t) for which all operations can, at 
least formally, be carried out. In this case, the density 
matrix obeys the exact equation 

»<r/d*=[£r(0,<r], (3.17) 

with the conventional choice ft = 1. If the time evolution 
operator U= U(t/) is defined by the Schrodinger 
equation and the initial condition: 

idU/dt=H(t)U, (3.18) 

W ) = l, (3.19) 

then it is readily verified that the time evolution of the 
density matrix obeys 

<r(t)=U(t,tr)*(f)U-l(t,t), (3.20) 
or 

«^(fl = E Ujkakp(t
f)(U~l)pi. (3.21) 

Comparison with Eq. (3.5) or (3.14) reveals that for 
this case 

<V*(/,0=ujk(t/) cz-HM'U (3.22) 
Let us now verify Eq. (3.15) by inserting Eq. (3.22) 

into its first term to obtain 

(iwio^u-^t/^j^uit/hj^un 
= Tr[ / (M')MO], (3.23) 

where 

I(t/)=U-l(t/)IU(t/). (3.24) 

The answer we wish to obtain, however, has the con­

ventional form 
</(/)J(O>=Tr[/(0J(*>(- oo)], (3.25) 
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where 
I(t)=U-l(t,-*>)IU(ti -oo) , (3.26) 

and we regard the time-dependent part of the Hamil­
tonian as having been turned on gradually in the 
distant part. 

We shall now transform Eq. (3.23) into a more 
general form which includes Eq. (3.25) as a special 
case: 

</(/)/(0)=TrC£/-HM/)/^(MO 
XlU(t',to)<T(h)U-i(t',to)J (3.27) 

By permuting the last factor to the left and utilizing 
the group property 

U(t,to)=U(t/)U(t',to), (3.28) 

Eq. (3.27) can be written in general form: 

(/(/)/(0)=Tr[/(/,^o)/(/,^o)cr(^o)] (3.29) 

for any choice of /0, with I(t,t0) defined by Eq. (3.24). 
The choice /o= — °° leads to Eq. (3.25) and verifies the 
correctness of our procedure. The choice h=tr returns 
one to Eq. (3.23). For use in a Markoflfran approxima­
tion, one would always choose t0 equal to the earlier of 
the two times, t and t'. 

We may remark that if in Eq. (3.12) we had chosen 
a=0 instead of a = l , we would have obtained instead 
the incorrect result 

(I(t)I(t'))=TrtI(t',to)I(t}to)*(to)l. (3.30) 

Thus, the choice a= 1 is ordained and the lack of sym­
metry in Eq. (3.12) with a^\ definitely suggests that 
we regard aqp not as random variables but as random 
operators. This possibility will be developed in the next 
section by the introduction of a second quantized no­
tation. In Sec. 5, we shall see that the present approach 
is an approximation in a more general framework, in­
volving the system in interaction with a reservoir. 

4. A SECOND QUANTIZED TREATMENT OF 
DENSITY MATRIX FLUCTUATIONS 

AT ONE TIME 
Because of the expectation that the <*,•»• can be repre­

sented by operators, we shall introduce a second 
quantized treatment of the system. Although it is not 
necessary to do so at the same time, we shall also intro­
duce a reservoir and assume that the system and 
reservoir interact. If <pi and <p3- are system states and the 
system operator / has the matrix element 

l<,= (vijn) (4.1) 

coupling them, then the second quantized operator 
corresponding to / , written boldface, is 

I = L / ^ t a y , (4.2) 

where at and a are the usual creation and destruction 
operators which obey 

[a r,a8t]±=5„, (4.3) 
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where commutation or anticommutation rules in 
Eq. (4.3) lead to the same results since we are dealing 
with only one system 

N^j:aM=l. (4.4) 

If we restrict ourselves to the reduced Hilbert space 
N=l for all initial and final states, then all operators 
(see Appendix A) can be reduced to the bilinear form 
shown in Eq. (4.2). 

If 9 denotes the density matrix of system plus reser­
voir, second quantized with respect to the system, then 

</>=Tr(I e ) ) (4.5) 
or 

I=Zlij^=Trs(Ia), (4.6) 
with 

<r ; l-=Tr(a^j>) (4.7) 

as the appropriate definition of the (reduced) density 
matrix of the system and the subscript 5 refers to a 
trace over the system. 

Because of the bilinear nature of all operators, we 
can write 

e = £ a ^ W * ) , (4.8) 
where the R in parenthesis is to remind us that Vij(R) 
is an operator in the reservoir variables. We can 
append a factor 8M,I or simply remember that in all 
subsequent calculations, we are restricted to N=l 
states. 

If we combine Eqs. (4.7) and (4.8), trace separately 
over system and reservoir, and make use of the lemma 

Tr s (aMraJaj) = My*, (4.9) 

Equation (A6), we obtain the more conventional 
definition 

<rr.= TTRVn(R) (4.10) 

of a system density matrix as a trace of the complete 
density matrix over the reservoir variables. Similarly, 
the second quantized system density matrix can be 
defined and expressed as 

S=TiR9=ZaM<rij (4.11) 

in view of Eqs. (4.8) and (4.10). 
Equation (4.7) indicates that the operator aMj whose 

mean value is o-y* corresponds to the random variable 
Vji of the preceding section. Thus, with 

we have 

(A(rgpAaik)=Tv£(ap^aq—(Tqp)(a^ai—<rik)o]- (4.12) 

Trace first over the reservoir which reduces Q to the 
system matrix S of Eq. (4.11) and insert the latter: 

(AvqpAvik)=Z)ti [Tr {a^a^aiaMj) 
— (Tqp Tr (a^aia^aj) — Tr (ap^aqa^aj)aik 

+ T r ( a i t a i ) ( r g p < m ] ( r . / (4.13) 

+&ij<rqp(rik]<Tij- (4.14) 

In Eq. (4.13) the trace "Tr" is over the system only and 
Eq. (4.14) is obtained by using the lemma proven in 
Appendix A that traces yield a contribution only if the 
first and last indices are identical, and the intermediate 
indices are equal in successive pairs. Equation (4.14) 
reduces directly to the result previously conjectured in 
Eq. (3.13) [whose consistency was verified in Eqs. 
(3.23)-(3.29)]. 

5. SECOND QUANTIZED TREATMENT OF TIME 
EVOLUTION AND AUTOCORRELATION 

The mean of a time-dependent observable /( /) can 
be written 

< I « ) = T r [ I ( / , O e ( 0 ] , (5.1) 
where 

I(MO = U - W ) I U ( / , 0 (5.2) 
and 

QV) = W,-«>)QW,-<°)- (5-3) 

Here, \J(t/) is the time evolution operator of system 
plus reservoir. The definition, Eq. (3.18) is still applica­
ble with H(t) now representing the Hamiltonian of 
system plus reservoir plus interaction in second quan­
tized notation. Equation, (5.1), with arbitrary tr can be 
obtained from the conventional definition [namely, 
Eq. (5.1) with f= — oo] by the same arguments used 
to derive Eq. (3.29). Equation (5.1) is equivalent to the 
conventional statement 

(KOHL/«**(0, (5.4) 
providing the time-dependent density matrix of the 
system is defined by 

aji(t) = Til\J-l(t,f)aMjV(t/)9(t
f)2. (5.5) 

The choices t1 — — oo and t'=t lead to the conventional 
and convenient definitions: 

erii(/) = TrCfli(0«>(0&(-«>)], (5.6) 

cr;i(0 = Tr[a t-ta i9W], (5.7) 

respectively. If we regard the driving forces as having 
been turned on gradually in the past, then {>(— oo) can 
be defined to be the equilibrium density matrix of the 
system-reservoir complex in the absence of driving 
forces, but the presence of interactions. [One can also 
turn on the system-reservoir interactions gradually and 
take {>(—oo) to be the equilibrium density matrix of 
the system, times that of the reservoir.] This procedure 
throws the burden of labor on aj(t)a,j{t) which must 
succeed in demonstrating how a system plus reservoir 
in equlibrium (possibly without interaction) is trans­
formed into a driven, interacting system. Equation (5.7) 
is a more convenient definition since no explicit refer­
ence is made to an equilibrium state, but the time 
evolution in the driven state can be considered. 

If we define 

0(O = E*rWr . (2* ,O , (5.8) 
then 

crf.(0 = T r ^ r . ( ^ , 0 (5.9) 
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is an immediate consequence of Eq. (5.7). We shall find 
it convenient therefore, to define 

frs(R,t) = vrs(R,t)/<Trsj (5.10) 
with 

TW„CR,*)=1. (5.H) 

Let us now investigate the time evolution formally 
by applying Eq. (5.5) together with 

V-'it^aMVit^^ZAp^XRAna^a,, (5.12) 

which is a consequence of the bilinearity of all operators 
in our subspace. The result is 

^ • ( ' ) = I O w ' - ( ( , / > , f W , (5.13) 
where 

We are now in a position to investigate autocorrela­
tion and determine to what extent it is expressible in 
terms of the 0 functions. If we parallel the notation of 
Eq. (3.23), we can write 

< / ( 0 / ( O ) = T r [ I ( / / ) W ) ] , (5.15) 

< / ( / ) / ( 0 > = £ / . ^ Tr 

X C U - W K ^ U O / K W W ] . (5.16) 

If we insert Eqs. (5.12) and (5.8), we obtain the 
rigorous result, 

</(0/(O>=E/^«Tr«[^p**'(*,</)/jp(Je,O>ii»(O, 
(5.17) 

appropriate for t>t'. 
If we now make the only approximation of the 

present paper, 
fiP(R/)^f(R7f)9 (5.18) 

then with the help of Eq. (5.14) we can write 

(I(t)I(t')) = Zli3hiOkpHt/)<rip(0, (5.19) 

in agreement with the result of our previous heuristic 
approach—see the first term in Eq. (3.15). The second 
term of Eq. (3.15), namely, (I(t))(I(?)) follows, of 
course, from Eq. (5.4) without requiring any 
approximations. 

The approximation, Eq. (5.18) is equivalent in 
Eq. (5.8) to the factorization: 

e(/)«S(0/(*,0, (5.20) 
where 

$(t) = HaM8<Trs(t) (5.21) 

is the second quantized density matrix of the system. 
It is clear that both S(/) and f(R,t) could have periodic 
parts, correlated in time, because of a periodic driving 
force. What is neglected in Eq. (5.18) is the ability of 
the reservoir density matrix to vary in a way which 
correlates with the system states. 
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6. GENERALIZATIONS AND SPECIALIZATIONS 

Our results of the previous section can be immediately 
generalized to the case of a set of operators /^(Q by 
defining 

/ ' ( « = Z / ^ i . « . (6.1) 

Equation (5.19) takes the form 

and Eq. (5.13) leads to: 

</*(')>=£ Ii/OqPHt/)<rgP(0- (6.3) 

If, now, we assume that the set of variables I»(t) con­
stitute a linear Markofrian set in the sense that 

</"«> = Z,G»>(t/)(P(0), (6.4) 

then the insertion of 

(P(t'))=Zh^w(0 (6.5) 

together with (6.3) into Eq. (6.4) leads to the 
requirement 

Hij IifOtpHtf) = E , G»>W)IP9>. (6.6) 

The use of Eq. (6.6) in (6.2) with *>=\ leads im­
mediately to 

</'(0/'(O>-2:xG'A(/,O</HO/'(O>. (6.7) 
The comparison of Eqs. (6.4) and (6.7) is equivalent to 
the statement that for a set of Markofrian variables 
JM(0> the regression of fluctuations is identical to the 
decay of a macroscopic signal.8 [Equation (5.19) is this 
same statement for the complete set of operators 
aMj.~] 

It may seem that the results just derived are limited 
to first and second moments—i.e., the mean motion and 
fluctuations therefrom. However, our procedure, in 
fact, yields the complete distribution function or all 
moments (at two times). For example, all moments of 
a quantity Q(t) can be obtained by setting / equal to 
the characteristic function 

/(0 = exp[/e(/)]. (6.8) 

The coefficient of /»in </(/)> yields <[£>(*)»• Similarly, 
one could evaluate 

<exP[/Q(0]exp[sP(O]> (6.9) 

to get all moments at two times involving Q and P. 
Such seemingly more complicated cases can be dealt 
with readily by making use of the essential bilinearity 
of all operators via Eq. (A 14). It is this bilinearity that 
guarantees that the equations of motion for the set of 
operators aj(ij are linear. This linearity is achieved by 
using a very large set of operators. We can illustrate 
the nature of our operators by noting that a harmonic 
oscillator, with creation and destruction operators A* 
and A obeying 

LA}Aq=l (6.10) 
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and possessing the usual eigenstates 

AiA\n)=n\n) 
with 

(6.11) 

i l t | »> - (n+ l )«» | w +i ) ; A\n)=nw\n-\), (6.12) 

can be expressed in our notation by setting 

n - 0 

GO 

n - 1 

so that Eq. (A3) leads to 
CO 

A^A — 23 na^an 
n—1 

and 
( 4 t 4 ) = X ; tlCnn, 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

where <rnn is the probability that the harmonic oscillator 
is in its nth excited state. 

The use of Eq. (A14) or (A15) permits us to exploit 
linearity in the form 

exp(ixA^A) = J2n a^an expOuw), (6.17) 

<exp(M^4f-4))=X! <r»» exp(fxn). (6.18) 

Thus, the complete distribution function for A^A at 
time t is specified by <rnn(/). 

Note added in proof. Subject to the one approximation 
of factorization (5.20) our conclusion (5.19) relating the 
regression of fluctuations to the solution (5.13) of the 
"macroscopic" equations of motion remains valid even 
for non-Markqffian systems. Equation (5.13) relating 
a(t) to its earlier value a(t') appears to imply that the 
system is Markoffian. However, the Green's function 
0 (/,/') depends on the history of the system implicitly 
through fqp(R/) since the "present" status of the 
reservoir may depend on the history of the system. The 
author is indebted to J. R. Klauder for this last remark. 

APPENDIX A. ALGEBRA OF SECOND 
QUANTIZATION FOR ONE SYSTEM 

Operator a/ creates a system in state j \ operator a» 
destroys a system in state i (or causes a vanishing result 
if state i is initially empty). Operators which contain 
as many creation as destruction operators leave 
Nzzz'E, ajat—the number of systems unchanged and 
are the only ones allowed in our algebra. We may use 
the commutation rules to rearrange any polynomial so 
that creation and destruction operators alternate, with 
a destruction operator acting first. 

Since any of the state vectors with iV=l has only 
one state occupied, it can be destroyed by the successive 
action of two destruction operators: 

or, more generally, 

(any operator)a,(any operator not involving a,-t) 
Xok\N=l)=0. (A2) 

We therefore obtain the following lemma: 
Lemma 1. If a polynomial operator is arranged to 

have a destruction operator in the right hand or first 
position followed by a creation operator, then a de­
struction operator, etc., then each destruction operator, 
except for the first, must be immediately preceded by 
the same creation operator or the result vanishes. For 
example: 

ajajarfai=8jkajai, (A3) 

aitajarfaiatJan—SjkdimaJan. (A4) 

Since aMj has no diagonal elements unless i=j, we have 

Tiajaj=6iiy (A5) 

Txa^aja^ai=djkdu, (A6) 

TxaMja^aiaJan=bj&iJbnu (A7) 

and we arrive at: 
Lemma 2. The trace of a polynomial operator is 

unity if the intermediate indices are equal in pairs as 
described in Lemma 1 and if the first and last indices 
are equal. 

Theorem L All allowed operators are bilinear, (This 
is an immediate consequence of Lemma 1.) 

If 
A=T,AijaMh (A8) 

B = E W f l i , (A9) 

it follows from Eq. (A3) that we can write 

AB=i: AiiBj0i1ai='EUB)i&M, (A10) 

or more briefly 

and obviously 

so that generally 

i.e., 

(All) 

(A12) 

(A13) 

(A14) 

aJaik|iVr= 1>=0, (Al) 

AB-+AB; 

A + B - * A+B, 

/ (A,B)-+/U,£) , 

/(A,B) = E/U^)^-tay. 

As an especially useful example, 

exp (i/H) = £ [exp (itH)ltjatej (A15) 
or 

exp(i/H) = X; {dij+ZexpiitH)-i]a)afas. (A16) 

Combining Eqs. (A5) and (A10), we also obtain 

Tr(AB) = Tr.4£, 
indicating the close correspondence between the quan­
tized and unquantized notations. 


